128 research outputs found

    The roundtable: an abstract model of conversation dynamics

    Full text link
    Is it possible to abstract a formal mechanism originating schisms and governing the size evolution of social conversations? In this work a constructive solution to such problem is proposed: an abstract model of a generic N-party turn-taking conversation. The model develops from simple yet realistic assumptions derived from experimental evidence, abstracts from conversation content and semantics while including topological information, and is driven by stochastic dynamics. We find that a single mechanism - namely the dynamics of conversational party's individual fitness, as related to conversation size - controls the development of the self-organized schisming phenomenon. Potential generalizations of the model - including individual traits and preferences, memory effects and more elaborated conversational topologies - may find important applications also in other fields of research, where dynamically-interacting and networked agents play a fundamental role.Comment: 18 pages, 4 figures, to be published in Journal of Artificial Societies and Social Simulatio

    The Roundtable: An Abstract Model of Conversation Dynamics

    Get PDF
    Is it possible to abstract a formal mechanism originating schisms and governing the size evolution of social conversations? In this work we propose a constructive solution to this problem: an abstract model of a generic N-party turn-taking conversation. The model develops from simple yet realistic assumptions derived from experimental evidence, abstracts from conversation content and semantics while including topological information, and is driven by stochastic dynamics. We find that a single mechanism, namely the dynamics of conversational party\'s individual fitness as related to conversation size, controls the development of the self-organized schisming phenomenon. Potential generalizations of the model - including individual traits and preferences, memory effects and more elaborated conversational topologies - may find important applications also in other fields of research, where dynamically-interacting and networked agents play a fundamental role.ABM, Complexity, Turn-Taking Dynamics, Schism, Stochastic Dynamics

    Enabling Capillary Self-Assembly for Microsystem Integration

    Get PDF
    Efficient and precise assembly of very-large quantities of sub-millimeter-sized devices onto pre-processed substrates is presently a key frontier for microelectronics, in its aspiration to large-scale mass production of devices with new functionalities and applications (e.g. thin dies embedded into flexible substrates, 3D microsystem integration). In this perspective, on the one hand established pick&place assembly techniques may be unsuitable, due to a trade-off between throughput and placement accuracy and to difficulties in predictably handling very-small devices. On the other hand, self-assembly processes are massively parallel, may run unsupervised and allow contactless manipulation of objects. The convergence between robotic assembly and self-assembly, epitomized by capillarity-enhanced flip-chip assembly, can therefore enable an ideal technology meeting short-to-medium-term electronic packaging and assembly needs. The objective of this thesis is bridging the gap between academic proofs-of- concept of capillary self-assembly and its industrial application. Our work solves several issues relevant to capillary self-assembly of thin dies onto preprocessed substrates. Very-different phenomena and aspects of both scientific and technological interest coexist in such a broad context. They were tackled both experimentally and theoretically. After a critical review of the state-of-the-art in microsystem integration, a complete quasi-static study of lateral capillary meniscus forces is presented. Our experimental setup enables also a novel method to measure the contact angle of liquids. Recessed binding sites are introduced to obtain perfectly-conformal fluid dip-coating of patterned surfaces, which enables the effective and robust coding of geometrical information into binding sites to direct the assembly of parts. A general procedure to establish solder-mediated electro-mechanical interconnections between parts and substrate is validated. Smart surface chemistries are invoked to solve the issue of mutual adhesion between parts during the capillary self-assembly process. Two chemical kinetic-inspired analytic models of fluidic self-assembly are presented and criticized to introduce a novel agent-based model of the process. The latter approach allows realistic simulations by taking into account spatial factors and collision dynamics. Concluding speculations propose envisioned solutions to residual open issues and further perspectives for this field of rapidly-growing importance

    Self-assembly of micro/nanosystems across scales and interfaces

    Get PDF
    Steady progress in understanding and implementation are establishing self-assembly as a versatile, parallel and scalable approach to the fabrication of transducers. In this contribution, I illustrate the principles and reach of self-assembly with three applications at different scales - namely, the capillary self-alignment of millimetric components, the sealing of liquid-filled polymeric microcapsules, and the accurate capillary assembly of single nanoparticles - and propose foreseeable directions for further developments

    The roundtable: an abstract model of conversation dynamics

    Get PDF
    Is it possible to abstract a formal mechanism originating schisms and governing the size evolution of social conversations? In this work we propose a constructive solution to this problem: an abstract model of a generic N-party turn-taking conversation. The model develops from simple yet realistic assumptions derived from experimental evidence, abstracts from conversation content and semantics while including topological information, and is driven by stochastic dynamics. We find that a single mechanism, namely the dynamics of conversational party's individual fitness as related to conversation size, controls the development of the self-organized schisming phenomenon. Potential generalizations of the model - including individual traits and preferences, memory effects and more elaborated conversational topologies - may find important applications also in other fields of research, where dynamically-interacting and networked agents play a fundamental role

    Failure Modes in Capillary Self-Assembly

    Get PDF
    Capillary self-assembly is rapidly emerging as an innovative technique to enhance, complement and eventually replace pick-and-place assembly for the integration of heterogeneous microsystems. Vast literature and experimental data support such claim. Yet, the technique needs to overcome important limitations in order to earn wide industrial recognition. In this talk, we illustrate the challenges ahead for making part-to-substrate capillary self-assembly reliable and seriously competitive. We focus on the standard embodiment of capillary self-assembly, and we describe in details the often novel technological steps required for its effective and reproducible performance. This preludes to an outline of what are presently the major failure modes affecting the overall yield of the technique. Consequently, we propose solutions to face these challenges and foster the success of this technique

    Three-dimensional self-assembly using dipolar interaction

    Full text link
    Interaction between dipolar forces, such as permanent magnets, generally leads to the formation of one-dimensional chains and rings. We investigated whether it was possible to let dipoles self-assemble into three-dimensional structures by encapsulating them in a shell with a specific shape. We found that the condition for self-assembly of a three-dimensional crystal is satisfied when the energies of dipoles in the parallel and antiparallel states are equal. Our experiments show that the most regular structures are formed using cylinders and cuboids and not by spheroids. This simple design rule will help the self-assembly community to realize three-dimensional crystals from objects in the micrometer range, which opens up the way toward previously unknown metamaterials.Comment: 4 page

    A Study of Yield Predictions for a Model of Homogeneous Self-Assembling Components

    Get PDF
    Self-assembly of homogeneous components has the advantage of being a decentralised and highly parallel method for assembling multiple target structures, and is ideal for effective large-scale manufacturing. Yet assembly yield may be negatively affected by the formation of incompatible substructures that prevent the formation of complete target structures. In this work we present physical and theoretical analysis of a simple magnetomechanical self-assembling systems exhibiting the problem of incompatible substructures in the formation of closed circular target structures out of eight homogeneous components. The assembly yield of physical experiments from 8 to 40 components is compared with the predictions of a computational model, and the model is found to accurately predict both the mean and standard deviation of the experimental yield

    Yield prediction in parallel homogeneous assembly

    Get PDF
    We investigate the parallel assembly of two-dimensional, geometrically-closed modular target structures out of homogeneous sets of macroscopic components of varying anisotropy. The yield predicted by a chemical reaction network (CRN)-based model is quantitatively shown to reproduce experimental results over a large set of conditions. Scaling laws for parallel assembling systems are then derived from the model. By extending the validity of the CRN-based modelling, this work prompts analysis and solutions to the incompatible substructure problem
    • 

    corecore